GPCR-styrene maleic acid lipid particles (GPCR-SMALPs): their nature and potential.
نویسندگان
چکیده
G-protein-coupled receptors (GPCRs) form the largest class of membrane proteins and are an important target for therapeutic drugs. These receptors are highly dynamic proteins sampling a range of conformational states in order to fulfil their complex signalling roles. In order to fully understand GPCR signalling mechanisms it is necessary to extract the receptor protein out of the plasma membrane. Historically this has universally required detergents which inadvertently strip away the annulus of lipid in close association with the receptor and disrupt lateral pressure exerted by the bilayer. Detergent-solubilized GPCRs are very unstable which presents a serious hurdle to characterization by biophysical methods. A range of strategies have been developed to ameliorate the detrimental effect of removing the receptor from the membrane including amphipols and reconstitution into nanodics stabilized by membrane scaffolding proteins (MSPs) but they all require exposure to detergent. Poly(styrene-co-maleic acid) (SMA) incorporates into membranes and spontaneously forms nanoscale poly(styrene-co-maleic acid) lipid particles (SMALPs), effectively acting like a 'molecular pastry cutter' to 'solubilize' GPCRs in the complete absence of detergent at any stage and with preservation of the native annular lipid throughout the process. GPCR-SMALPs have similar pharmacological properties to membrane-bound receptor, exhibit enhanced stability compared with detergent-solubilized receptors and being non-proteinaceous in nature, are fully compatible with downstream biophysical analysis of the encapsulated GPCR.
منابع مشابه
Fast Collisional Lipid Transfer Among Polymer-Bounded Nanodiscs
Some styrene/maleic acid (SMA) copolymers solubilise membrane lipids and proteins to form polymer-bounded nanodiscs termed SMA/lipid particles (SMALPs). Although SMALPs preserve a lipid-bilayer core, they appear to be more dynamic than other membrane mimics. We used time-resolved Förster resonance energy transfer and small-angle neutron scattering to determine the kinetics and the mechanisms of...
متن کاملG-protein coupled receptor solubilization and purification for biophysical analysis and functional studies, in the total absence of detergent
G-protein coupled receptors (GPCRs) constitute the largest class of membrane proteins and are a major drug target. A serious obstacle to studying GPCR structure/function characteristics is the requirement to extract the receptors from their native environment in the plasma membrane, coupled with the inherent instability of GPCRs in the detergents required for their solubilization. In the presen...
متن کاملThe use of SMALPs as a novel membrane protein scaffold for structure study by negative stain electron microscopy
Despite the great progress recently made in resolving their structures, investigation of the structural biology of membrane proteins still presents major challenges. Even with new technical advances such as lipidic cubic phase crystallisation, obtaining well-ordered crystals remains a significant hurdle in membrane protein X-ray crystallographic studies. As an alternative, electron microscopy h...
متن کاملOvercoming bottlenecks in the membrane protein structural biology pipeline.
Membrane proteins account for a third of the eukaryotic proteome, but are greatly under-represented in the Protein Data Bank. Unfortunately, recent technological advances in X-ray crystallography and EM cannot account for the poor solubility and stability of membrane protein samples. A limitation of conventional detergent-based methods is that detergent molecules destabilize membrane proteins, ...
متن کاملEncapsulated membrane proteins: A simplified system for molecular simulation.
Over the past 50years there has been considerable progress in our understanding of biomolecular interactions at an atomic level. This in turn has allowed molecular simulation methods employing full atomistic modelling at ever larger scales to develop. However, some challenging areas still remain where there is either a lack of atomic resolution structures or where the simulation system is inher...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Biochemical Society transactions
دوره 44 2 شماره
صفحات -
تاریخ انتشار 2016